Physics 402 Prof. Anlage Discussion Worksheet

WKB Approximation applied to the Harmonic Oscillator. Find the eigen-energies of the bound states of a 1D harmonic oscillator $(V(x) = m\omega^2 x^2/2)$ using the WKB approximation.

Hint 1: WKB for finite well with classical turning points at x_1 and x_2 :

$$\int_{x_1}^{x_2} \sqrt{2m(E - V(x'))} \, dx' = \pi \hbar \left(n - \frac{1}{2} \right) \text{ with } n = 1, 2, 3, \dots$$

Hint 2: Total energy $E = \frac{1}{2} m \omega^2 A^2$, where $\pm A$ are the classical turning points.

Hint 3:
$$\int_{-\pi/2}^{+\pi/2} \cos^2 \theta \ d\theta = \frac{1}{2} \pi$$

Physics 402 Prof. Anlage Discussion Worksheet

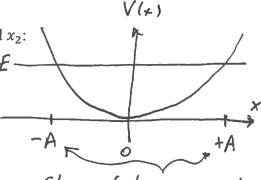
1. WKB Approximation applied to the Harmonic Oscillator. Find the eigenenergies of the bound states of a 1D harmonic oscillator $(V(x) = m\omega^2 x^2/2)$ using the WKB approximation.

Hint 1: WKB for finite well with classical turning points at x_1 and x_2 : $\int_{x_1}^{x_2} \sqrt{2m(E - V(x'))} dx' = \pi \hbar \left(n - \frac{1}{2}\right) \text{ with } n = 1, 2, 3, \dots$

 $\int_{x_1} \sqrt{2m(E-V(x))} \, dx = nn\left(n-\frac{1}{2}\right)$

Hint 2: $\int_{-\pi/2}^{+\pi/2} \cos^2 \theta \ d\theta = \frac{1}{2} \pi$

 $\Rightarrow \int_{-A}^{+A} \sqrt{2m(E-mw^2k')^2/2} dx' = \pi + (n-\frac{1}{2})$



Clarercel turning perst

Write the total energy of $E = \frac{1}{2}m\omega^2A^2$, so the integral become

$$I = \int_{2m} \sqrt{\frac{m\omega^2}{2}} \int_{-A}^{A} \sqrt{A^2 - (x')^2} dx'$$

Now substitue X=Asind dx'= Acerd 28

so the integral becames

The average value of cos? of over an integer number of "loops" is 1/2. This integel

is just = xT

So from the WKB equation, we have

or finally,
$$E = (P + \frac{1}{2})\hbar\omega$$
, $P = 0, 1, 2, 3, ...$
The exact eigen-energies of the hormonic oscillator!